Exercise 7.1.22 If $T : \mathbf{M}_{nn} \to \mathbb{R}$ is any linear transformation satisfying T(AB) = T(BA) for all *A* and *B* in \mathbf{M}_{nn} , show that there exists a number *k* such that $T(A) = k \operatorname{tr} A$ for all *A*. (See Lemma 5.5.1.) [*Hint*: Let E_{ij} denote the $n \times n$ matrix with 1 in the (i, j) position and zeros elsewhere.

Show that $E_{ik}E_{lj} = \begin{cases} 0 & \text{if } k \neq l \\ E_{ij} & \text{if } k = l \end{cases}$. Use this to show that $T(E_{ij}) = 0$ if $i \neq j$ and $T(E_{11}) = T(E_{22}) = \cdots = T(E_{nn})$. Put $k = T(E_{11})$ and use the fact that $\{E_{ij} \mid 1 \leq i, j \leq n\}$ is a basis of \mathbf{M}_{nn} .]

Exercise 7.1.23 Let $T : \mathbb{C} \to \mathbb{C}$ be a linear transformation of the real vector space \mathbb{C} and assume that T(a) = a for every real number *a*. Show that the following are equivalent:

a. T(zw) = T(z)T(w) for all z and w in \mathbb{C} .

b. Either $T = 1_{\mathbb{C}}$ or $T(z) = \overline{z}$ for each z in \mathbb{C} (where \overline{z} denotes the conjugate).

7.2 Kernel and Image of a Linear Transformation

This section is devoted to two important subspaces associated with a linear transformation $T: V \to W$.

Definition 7.2 Kernel and Image of a Linear Transformation

The kernel of T (denoted ker T) and the image of T (denoted im T or T(V)) are defined by

ker $T = \{ \mathbf{v} \text{ in } V \mid T(\mathbf{v}) = \mathbf{0} \}$ im $T = \{T(\mathbf{v}) \mid \mathbf{v} \text{ in } V\} = T(V)$

The kernel of *T* is often called the **nullspace** of *T* because it consists of all vectors **v** in *V* satisfying the *condition* that $T(\mathbf{v}) = \mathbf{0}$. The image of *T* is often called the **range** of *T* and consists of all vectors **w** in *W* of the *form* $\mathbf{w} = T(\mathbf{v})$ for some **v** in *V*. These subspaces are depicted in the diagrams.

Example 7.2.1

Let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation induced by the $m \times n$ matrix A, that is $T_A(\mathbf{x}) = A\mathbf{x}$ for all columns \mathbf{x} in \mathbb{R}^n . Then

ker $T_A = \{\mathbf{x} \mid A\mathbf{x} = \mathbf{0}\} = \text{null } A$ and im $T_A = \{A\mathbf{x} \mid \mathbf{x} \text{ in } \mathbb{R}^n\} = \text{im } A$

Hence the following theorem extends Example 5.1.2.

Theorem 7.2.1

Let $T: V \to W$ be a linear transformation.

- 1. ker T is a subspace of V.
- 2. im T is a subspace of W.

<u>Proof.</u> The fact that $T(\mathbf{0}) = \mathbf{0}$ shows that ker T and im T contain the zero vector of V and W respectively.

1. If **v** and **v**₁ lie in ker *T*, then $T(\mathbf{v}) = \mathbf{0} = T(\mathbf{v}_1)$, so

$$T(\mathbf{v} + \mathbf{v}_1) = T(\mathbf{v}) + T(\mathbf{v}_1) = \mathbf{0} + \mathbf{0} = \mathbf{0}$$

$$T(r\mathbf{v}) = rT(\mathbf{v}) = r\mathbf{0} = \mathbf{0} \text{ for all } r \text{ in } \mathbb{R}$$

Hence $\mathbf{v} + \mathbf{v}_1$ and $r\mathbf{v}$ lie in ker *T* (they satisfy the required condition), so ker *T* is a subspace of *V* by the subspace test (Theorem 6.2.1).

2. If w and w₁ lie in im T, write w = T(v) and $w_1 = T(v_1)$ where v, $v_1 \in V$. Then

$$\mathbf{w} + \mathbf{w}_1 = T(\mathbf{v}) + T(\mathbf{v}_1) = T(\mathbf{v} + \mathbf{v}_1)$$

$$r\mathbf{w} = rT(\mathbf{v}) = T(r\mathbf{v}) \quad \text{for all } r \text{ in } \mathbb{R}$$

Hence $\mathbf{w} + \mathbf{w}_1$ and $r\mathbf{w}$ both lie in im T (they have the required form), so im T is a subspace of W.

Given a linear transformation $T: V \rightarrow W$:

dim (ker *T*) is called the **nullity** of *T* and denoted as nullity (*T*) dim (im *T*) is called the **rank** of *T* and denoted as rank (*T*)

The rank of a matrix A was defined earlier to be the dimension of col A, the column space of A. The two usages of the word *rank* are consistent in the following sense. Recall the definition of T_A in Example 7.2.1.

Example 7.2.2	
Given an $m \times n$ matrix A, show that im $T_A = \operatorname{col} A$, so rank $T_A = \operatorname{rank} A$.	
Solution. Write $A = \begin{bmatrix} \mathbf{c}_1 & \cdots & \mathbf{c}_n \end{bmatrix}$ in terms of its columns. Then	
im $T_A = \{A\mathbf{x} \mid \mathbf{x} \text{ in } \mathbb{R}^n\} = \{x_1\mathbf{c}_1 + \dots + x_n\mathbf{c}_n \mid x_i \text{ in } \mathbb{R}\}$	
using Definition 2.5. Hence im T_A is the column space of A; the rest follows.	

Often, a useful way to study a subspace of a vector space is to exhibit it as the kernel or image of a linear transformation. Here is an example.

Example 7.2.3

Define a transformation $P : \mathbf{M}_{nn} \to \mathbf{M}_{nn}$ by $P(A) = A - A^T$ for all A in \mathbf{M}_{nn} . Show that P is linear and that:

- a. ker *P* consists of all symmetric matrices.
- b. im *P* consists of all skew-symmetric matrices.

Solution. The verification that *P* is linear is left to the reader. To prove part (a), note that a matrix *A* lies in ker *P* just when $0 = P(A) = A - A^T$, and this occurs if and only if $A = A^T$ —that is, *A* is symmetric. Turning to part (b), the space im *P* consists of all matrices P(A), *A* in **M**_{nn}. Every such matrix is skew-symmetric because

$$P(A)^{T} = (A - A^{T})^{T} = A^{T} - A = -P(A)$$

On the other hand, if S is skew-symmetric (that is, $S^T = -S$), then S lies in im P. In fact,

$$P\left[\frac{1}{2}S\right] = \frac{1}{2}S - \left[\frac{1}{2}S\right]^T = \frac{1}{2}(S - S^T) = \frac{1}{2}(S + S) = S$$

One-to-One and Onto Transformations

Definition 7.3 One-to-one and Onto Linear Transformations

Let $T: V \to W$ be a linear transformation.

- 1. *T* is said to be **onto** if im T = W.
- 2. *T* is said to be **one-to-one** if $T(\mathbf{v}) = T(\mathbf{v}_1)$ implies $\mathbf{v} = \mathbf{v}_1$.

A vector **w** in *W* is said to be **hit** by *T* if $\mathbf{w} = T(\mathbf{v})$ for some **v** in *V*. Then *T* is onto if every vector in *W* is hit at least once, and *T* is one-to-one if no element of *W* gets hit twice. Clearly the onto transformations *T* are those for which im T = W is as large a subspace of *W* as possible. By contrast, Theorem 7.2.2 shows that the one-to-one transformations *T* are the ones with ker *T* as *small* a subspace of *V* as possible.

Theorem 7.2.2

If $T: V \to W$ is a linear transformation, then T is one-to-one if and only if ker $T = \{0\}$.

<u>Proof.</u> If *T* is one-to-one, let **v** be any vector in ker *T*. Then $T(\mathbf{v}) = \mathbf{0}$, so $T(\mathbf{v}) = T(\mathbf{0})$. Hence $\mathbf{v} = \mathbf{0}$ because *T* is one-to-one. Hence ker $T = \{\mathbf{0}\}$.

Conversely, assume that ker $T = \{0\}$ and let $T(\mathbf{v}) = T(\mathbf{v}_1)$ with \mathbf{v} and \mathbf{v}_1 in V. Then $T(\mathbf{v} - \mathbf{v}_1) = T(\mathbf{v}) - T(\mathbf{v}_1) = \mathbf{0}$, so $\mathbf{v} - \mathbf{v}_1$ lies in ker $T = \{0\}$. This means that $\mathbf{v} - \mathbf{v}_1 = \mathbf{0}$, so $\mathbf{v} = \mathbf{v}_1$, proving that T is one-to-one.

Example 7.2.4

The identity transformation $1_V: V \to V$ is both one-to-one and onto for any vector space V.

Example 7.2.5

Consider the linear transformations

$$S : \mathbb{R}^3 \to \mathbb{R}^2$$
 given by $S(x, y, z) = (x+y, x-y)$
 $T : \mathbb{R}^2 \to \mathbb{R}^3$ given by $T(x, y) = (x+y, x-y, x)$

Show that *T* is one-to-one but not onto, whereas *S* is onto but not one-to-one.

Solution. The verification that they are linear is omitted. T is one-to-one because

ker
$$T = \{(x, y) | x + y = x - y = x = 0\} = \{(0, 0)\}\$$

However, it is not onto. For example (0, 0, 1) does not lie in im *T* because if (0, 0, 1) = (x+y, x-y, x) for some *x* and *y*, then x+y=0=x-y and x=1, an impossibility. Turning to *S*, it is not one-to-one by Theorem 7.2.2 because (0, 0, 1) lies in ker *S*. But every element (s, t) in \mathbb{R}^2 lies in im *S* because (s, t) = (x+y, x-y) = S(x, y, z) for some *x*, *y*, and *z* (in fact, $x = \frac{1}{2}(s+t)$, $y = \frac{1}{2}(s-t)$, and z = 0). Hence *S* is onto.

Example 7.2.6

Let U be an invertible $m \times m$ matrix and define

 $T: \mathbf{M}_{mn} \to \mathbf{M}_{mn}$ by T(X) = UX for all X in \mathbf{M}_{mn}

Show that T is a linear transformation that is both one-to-one and onto.

<u>Solution</u>. The verification that *T* is linear is left to the reader. To see that *T* is one-to-one, let T(X) = 0. Then UX = 0, so left-multiplication by U^{-1} gives X = 0. Hence ker $T = \{0\}$, so *T* is one-to-one. Finally, if *Y* is any member of \mathbf{M}_{mn} , then $U^{-1}Y$ lies in \mathbf{M}_{mn} too, and $T(U^{-1}Y) = U(U^{-1}Y) = Y$. This shows that *T* is onto.

The linear transformations $\mathbb{R}^n \to \mathbb{R}^m$ all have the form T_A for some $m \times n$ matrix A (Theorem 2.6.2). The next theorem gives conditions under which they are onto or one-to-one. Note the connection with Theorem 5.4.3 and Theorem 5.4.4.

Theorem 7.2.3

Let *A* be an $m \times n$ matrix, and let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation induced by *A*, that is $T_A(\mathbf{x}) = A\mathbf{x}$ for all columns \mathbf{x} in \mathbb{R}^n .

- 1. T_A is onto if and only if rank A = m.
- 2. T_A is one-to-one if and only if rank A = n.

Proof.

- 1. We have that im T_A is the column space of A (see Example 7.2.2), so T_A is onto if and only if the column space of A is \mathbb{R}^m . Because the rank of A is the dimension of the column space, this holds if and only if rank A = m.
- 2. ker $T_A = \{\mathbf{x} \text{ in } \mathbb{R}^n | A\mathbf{x} = \mathbf{0}\}$, so (using Theorem 7.2.2) T_A is one-to-one if and only if $A\mathbf{x} = \mathbf{0}$ implies $\mathbf{x} = \mathbf{0}$. This is equivalent to rank A = n by Theorem 5.4.3.

The Dimension Theorem

Let *A* denote an $m \times n$ matrix of rank *r* and let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ denote the corresponding matrix transformation given by $T_A(\mathbf{x}) = A\mathbf{x}$ for all columns \mathbf{x} in \mathbb{R}^n . It follows from Example 7.2.1 and Example 7.2.2 that im $T_A = \operatorname{col} A$, so dim (im T_A) = dim (col A) = *r*. On the other hand Theorem 5.4.2 shows that dim (ker T_A) = dim (null A) = n - r. Combining these we see that

```
\dim(\operatorname{im} T_A) + \dim(\ker T_A) = n for every m \times n matrix A
```

The main result of this section is a deep generalization of this observation.

Theorem 7.2.4: Dimension Theorem

Let $T: V \to W$ be any linear transformation and assume that ker T and im T are both finite dimensional. Then V is also finite dimensional and

 $\dim V = \dim (\ker T) + \dim (\operatorname{im} T)$

In other words, dim V = nullity(T) + rank(T).

Proof. Every vector in im T = T(V) has the form $T(\mathbf{v})$ for some \mathbf{v} in V. Hence let $\{T(\mathbf{e}_1), T(\mathbf{e}_2), \dots, T(\mathbf{e}_r)\}$ be a basis of im T, where the \mathbf{e}_i lie in V. Let $\{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_k\}$ be any basis of ker T. Then dim (im T) = r and dim (ker T) = k, so it suffices to show that $B = \{\mathbf{e}_1, \dots, \mathbf{e}_r, \mathbf{f}_1, \dots, \mathbf{f}_k\}$ is a basis of V.

1. *B* spans *V*. If **v** lies in *V*, then $T(\mathbf{v})$ lies in im *V*, so

$$T(\mathbf{v}) = t_1 T(\mathbf{e}_1) + t_2 T(\mathbf{e}_2) + \dots + t_r T(\mathbf{e}_r) \quad t_i \text{ in } \mathbb{R}$$

This implies that $\mathbf{v} - t_1 \mathbf{e}_1 - t_2 \mathbf{e}_2 - \cdots - t_r \mathbf{e}_r$ lies in ker *T* and so is a linear combination of $\mathbf{f}_1, \ldots, \mathbf{f}_k$. Hence \mathbf{v} is a linear combination of the vectors in *B*. 2. *B* is *linearly independent*. Suppose that t_i and s_j in \mathbb{R} satisfy

$$t_1\mathbf{e}_1 + \dots + t_r\mathbf{e}_r + s_1\mathbf{f}_1 + \dots + s_k\mathbf{f}_k = \mathbf{0}$$

$$(7.1)$$

Applying *T* gives $t_1T(\mathbf{e}_1) + \cdots + t_rT(\mathbf{e}_r) = \mathbf{0}$ (because $T(\mathbf{f}_i) = \mathbf{0}$ for each *i*). Hence the independence of $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_r)\}$ yields $t_1 = \cdots = t_r = 0$. But then (7.1) becomes

$$s_1\mathbf{f}_1 + \cdots + s_k\mathbf{f}_k = \mathbf{0}$$

so $s_1 = \cdots = s_k = 0$ by the independence of $\{\mathbf{f}_1, \ldots, \mathbf{f}_k\}$. This proves that *B* is linearly independent.

Note that the vector space V is not assumed to be finite dimensional in Theorem 7.2.4. In fact, verifying that ker T and im T are both finite dimensional is often an important way to *prove* that V is finite dimensional.

Note further that r + k = n in the proof so, after relabelling, we end up with a basis

$$B = \{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_r, \mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$$

of V with the property that $\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ is a basis of ker T and $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_r)\}$ is a basis of im T. In fact, if V is known in advance to be finite dimensional, then *any* basis $\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ of ker T can be extended to a basis $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_r, \mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ of V by Theorem 6.4.1. Moreover, it turns out that, no matter how this is done, the vectors $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_r)\}$ will be a basis of im T. This result is useful, and we record it for reference. The proof is much like that of Theorem 7.2.4 and is left as Exercise 7.2.26.

Theorem 7.2.5

Let $T: V \to W$ be a linear transformation, and let $\{\mathbf{e}_1, \ldots, \mathbf{e}_r, \mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ be a basis of V such that $\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_n\}$ is a basis of ker T. Then $\{T(\mathbf{e}_1), \ldots, T(\mathbf{e}_r)\}$ is a basis of im T, and hence $r = \operatorname{rank} T$.

The dimension theorem is one of the most useful results in all of linear algebra. It shows that if either dim (ker T) or dim (im T) can be found, then the other is automatically known. In many cases it is easier to compute one than the other, so the theorem is a real asset. The rest of this section is devoted to illustrations of this fact. The next example uses the dimension theorem to give a different proof of the first part of Theorem 5.4.2.

Example 7.2.7

Let *A* be an $m \times n$ matrix of rank *r*. Show that the space null *A* of all solutions of the system $A\mathbf{x} = \mathbf{0}$ of *m* homogeneous equations in *n* variables has dimension n - r.

<u>Solution</u>. The space in question is just ker T_A , where $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is defined by $T_A(\mathbf{x}) = A\mathbf{x}$ for all columns \mathbf{x} in \mathbb{R}^n . But dim (im T_A) = rank T_A = rank A = r by Example 7.2.2, so dim (ker T_A) = n - r by the dimension theorem.

Example 7.2.8

If $T: V \to W$ is a linear transformation where V is finite dimensional, then

 $\dim(\ker T) \leq \dim V$ and $\dim(\operatorname{im} T) \leq \dim V$

Indeed, dim $V = \dim(\ker T) + \dim(\operatorname{im} T)$ by Theorem 7.2.4. Of course, the first inequality also follows because ker *T* is a subspace of *V*.

Example 7.2.9

Let $D : \mathbf{P}_n \to \mathbf{P}_{n-1}$ be the differentiation map defined by D[p(x)] = p'(x). Compute ker *D* and hence conclude that *D* is onto.

<u>Solution</u>. Because p'(x) = 0 means p(x) is constant, we have dim (ker D) = 1. Since dim $\mathbf{P}_n = n + 1$, the dimension theorem gives

$$\dim (\operatorname{im} D) = (n+1) - \dim (\ker D) = n = \dim (\mathbf{P}_{n-1})$$

This implies that im $D = \mathbf{P}_{n-1}$, so *D* is onto.

Of course it is not difficult to verify directly that each polynomial q(x) in \mathbf{P}_{n-1} is the derivative of some polynomial in \mathbf{P}_n (simply integrate q(x)!), so the dimension theorem is not needed in this case. However, in some situations it is difficult to see directly that a linear transformation is onto, and the method used in Example 7.2.9 may be by far the easiest way to prove it. Here is another illustration.

Example 7.2.10

Given *a* in \mathbb{R} , the evaluation map $E_a : \mathbf{P}_n \to \mathbb{R}$ is given by $E_a[p(x)] = p(a)$. Show that E_a is linear and onto, and hence conclude that $\{(x-a), (x-a)^2, \dots, (x-a)^n\}$ is a basis of ker E_a , the subspace of all polynomials p(x) for which p(a) = 0.

<u>Solution</u>. E_a is linear by Example 7.1.3; the verification that it is onto is left to the reader. Hence dim (im E_a) = dim (\mathbb{R}) = 1, so dim (ker E_a) = (n+1) - 1 = n by the dimension theorem. Now each of the *n* polynomials (x-a), $(x-a)^2$, ..., $(x-a)^n$ clearly lies in ker E_a , and they are linearly independent (they have distinct degrees). Hence they are a basis because dim (ker E_a) = n.

We conclude by applying the dimension theorem to the rank of a matrix.

Example 7.2.11

If A is any $m \times n$ matrix, show that rank $A = \operatorname{rank} A^T A = \operatorname{rank} A A^T$.

Solution. It suffices to show that rank $A = \operatorname{rank} A^T A$ (the rest follows by replacing A with A^T). Write $B = A^T A$, and consider the associated matrix transformations

 $T_A: \mathbb{R}^n \to \mathbb{R}^m$ and $T_B: \mathbb{R}^n \to \mathbb{R}^n$

The dimension theorem and Example 7.2.2 give

rank
$$A$$
 = rank T_A = dim (im T_A) = n - dim (ker T_A)
rank B = rank T_B = dim (im T_B) = n - dim (ker T_B)

so it suffices to show that ker $T_A = \ker T_B$. Now $A\mathbf{x} = \mathbf{0}$ implies that $B\mathbf{x} = A^T A \mathbf{x} = \mathbf{0}$, so ker T_A is contained in ker T_B . On the other hand, if $B\mathbf{x} = \mathbf{0}$, then $A^T A \mathbf{x} = \mathbf{0}$, so

$$\|A\mathbf{x}\|^2 = (A\mathbf{x})^T (A\mathbf{x}) = \mathbf{x}^T A^T A \mathbf{x} = \mathbf{x}^T \mathbf{0} = 0$$

This implies that $A\mathbf{x} = \mathbf{0}$, so ker T_B is contained in ker T_A .

Exercises for 7.2

Exercise 7.2.1 For each matrix *A*, find a basis for the kernel and image of T_A , and find the rank and nullity of T_A .

a.

$$\begin{bmatrix} 1 & 2 & -1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & -3 & 2 & 0 \end{bmatrix}$$
 b.
 $\begin{bmatrix} 2 & 1 & -1 & 3 \\ 1 & 0 & 3 & 1 \\ 1 & 1 & -4 & 2 \end{bmatrix}$

 c.
 $\begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ 4 & -1 & 5 \\ 0 & 2 & -2 \end{bmatrix}$
 d.
 $\begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & 3 \\ 1 & 2 & -3 \\ 0 & 3 & -6 \end{bmatrix}$

Exercise 7.2.2 In each case, (i) find a basis of ker T, and (ii) find a basis of im T. You may assume that T is linear.

a.
$$T : \mathbf{P}_2 \to \mathbb{R}^2$$
; $T(a+bx+cx^2) = (a, b)$
b. $T : \mathbf{P}_2 \to \mathbb{R}^2$; $T(p(x)) = (p(0), p(1))$
c. $T : \mathbb{R}^3 \to \mathbb{R}^3$; $T(x, y, z) = (x+y, x+y, 0)$
d. $T : \mathbb{R}^3 \to \mathbb{R}^4$; $T(x, y, z) = (x, x, y, y)$
e. $T : \mathbf{M}_{22} \to \mathbf{M}_{22}$; $T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+b & b+c \\ c+d & d+a \end{bmatrix}$
f. $T : \mathbf{M}_{22} \to \mathbb{R}$; $T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a+d$
g. $T : \mathbf{P}_n \to \mathbb{R}$; $T(r_0+r_1x+\cdots+r_nx^n) = r_n$

h.
$$T : \mathbb{R}^n \to \mathbb{R}; T(r_1, r_2, ..., r_n) = r_1 + r_2 + \dots + r_n$$

i.
$$T: \mathbf{M}_{22} \to \mathbf{M}_{22}; T(X) = XA - AX$$
, where
 $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
j. $T: \mathbf{M}_{22} \to \mathbf{M}_{22}; T(X) = XA$, where $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$

Exercise 7.2.3 Let $P: V \to \mathbb{R}$ and $Q: V \to \mathbb{R}$ be linear transformations, where *V* is a vector space. Define $T: V \to \mathbb{R}^2$ by $T(\mathbf{v}) = (P(\mathbf{v}), Q(\mathbf{v}))$.

- a. Show that T is a linear transformation.
- b. Show that ker $T = \ker P \cap \ker Q$, the set of vectors in both ker P and ker Q.

Exercise 7.2.4 In each case, find a basis

 $B = \{\mathbf{e}_1, \dots, \mathbf{e}_r, \mathbf{e}_{r+1}, \dots, \mathbf{e}_n\}$ of *V* such that $\{\mathbf{e}_{r+1}, \dots, \mathbf{e}_n\}$ is a basis of ker *T*, and verify Theorem 7.2.5.

- a. $T : \mathbb{R}^3 \to \mathbb{R}^4$; T(x, y, z) = (x y + 2z, x + y z, 2x + z, 2y 3z)
- b. $T : \mathbb{R}^3 \to \mathbb{R}^4$; T(x, y, z) = (x + y + z, 2x y + 3z, z 3y, 3x + 4z)

Exercise 7.2.5 Show that every matrix X in \mathbf{M}_{nn} has the **Exercise 7.2.8** Given $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ in a vector space V, form $X = A^T - 2A$ for some matrix A in \mathbf{M}_{nn} . [*Hint*: The dimension theorem.]

Exercise 7.2.6 In each case either prove the statement or give an example in which it is false. Throughout, let $T: V \to W$ be a linear transformation where V and W are finite dimensional.

- a. If V = W, then ker $T \subseteq \text{im } T$.
- b. If dim V = 5, dim W = 3, and dim (ker T) = 2, then T is onto.
- c. If dim V = 5 and dim W = 4, then ker $T \neq \{0\}$.
- d. If ker T = V, then $W = \{0\}$.
- e. If $W = \{\mathbf{0}\}$, then ker T = V.
- f. If W = V, and im $T \subseteq \ker T$, then T = 0.
- g. If $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a basis of V and $T(\mathbf{e}_1) = \mathbf{0} = T(\mathbf{e}_2)$, then dim (im T) ≤ 1 .
- h. If dim (ker T) \leq dim W, then dim $W \geq \frac{1}{2}$ dim V.
- i. If T is one-to-one, then dim $V \leq \dim W$.
- j. If dim $V \leq \dim W$, then T is one-to-one.
- k. If T is onto, then dim $V \ge \dim W$.
- 1. If dim $V \ge \dim W$, then T is onto.
- m. If $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_k)\}$ is independent, then $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is independent.
- n. If $\{v_1, ..., v_k\}$ spans *V*, then $\{T(v_1), ..., T(v_k)\}$ spans W.

Exercise 7.2.7 Show that linear independence is preserved by one-to-one transformations and that spanning sets are preserved by onto transformations. More precisely, if $T: V \to W$ is a linear transformation, show that:

- a. If *T* is one-to-one and $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is independent in V, then $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)\}$ is independent in W.
- b. If T is onto and $V = \text{span} \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, then $W = \operatorname{span} \{ T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n) \}.$

define $T : \mathbb{R}^n \to V$ by $T(r_1, \ldots, r_n) = r_1 \mathbf{v}_1 + \cdots + r_n \mathbf{v}_n$. Show that T is linear, and that:

- a. *T* is one-to-one if and only if $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is independent.
- b. *T* is onto if and only if $V = \text{span} \{ \mathbf{v}_1, ..., \mathbf{v}_n \}$.

Exercise 7.2.9 Let $T: V \to V$ be a linear transformation where V is finite dimensional. Show that exactly one of (i) and (ii) holds: (i) $T(\mathbf{v}) = \mathbf{0}$ for some $\mathbf{v} \neq \mathbf{0}$ in V; (ii) $T(\mathbf{x}) = \mathbf{v}$ has a solution \mathbf{x} in V for every \mathbf{v} in V.

Exercise 7.2.10 Let $T : \mathbf{M}_{nn} \to \mathbb{R}$ denote the trace map: $T(A) = \operatorname{tr} A$ for all A in \mathbf{M}_{nn} . Show that $\dim(\ker T) = n^2 - 1.$

Exercise 7.2.11 Show that the following are equivalent for a linear transformation $T: V \to W$.

1. ker T = V2. im $T = \{0\}$ 3. T = 0

Exercise 7.2.12 Let *A* and *B* be $m \times n$ and $k \times n$ matrices, respectively. Assume that $A\mathbf{x} = \mathbf{0}$ implies $B\mathbf{x} = \mathbf{0}$ for every *n*-column **x**. Show that rank $A \ge \operatorname{rank} B$. [Hint: Theorem 7.2.4.]

Exercise 7.2.13 Let A be an $m \times n$ matrix of rank r. Thinking of \mathbb{R}^n as rows, define $V = \{\mathbf{x} \text{ in } \mathbb{R}^m \mid \mathbf{x}A = \mathbf{0}\}.$ Show that dim V = m - r.

Exercise 7.2.14 Consider

$$V = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \middle| a + c = b + d \right\}$$

- a. Consider $S: \mathbf{M}_{22} \to \mathbb{R}$ with $S \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a + c c$ b-d. Show that S is linear and onto and that V is a subspace of M_{22} . Compute dim V.
- b. Consider $T: V \to \mathbb{R}$ with $T \begin{vmatrix} a & b \\ c & d \end{vmatrix} = a + c$. Show that T is linear and onto, and use this information to compute dim (ker T).

Exercise 7.2.15 Define $T : \mathbf{P}_n \to \mathbb{R}$ by T[p(x)] = the sum of all the coefficients of p(x).

a. Use the dimension theorem to show that $\dim(\ker T) = n.$

of ker T.

Exercise 7.2.16 Use the dimension theorem to prove Theorem 1.3.1: If A is an $m \times n$ matrix with m < n, the system $A\mathbf{x} = \mathbf{0}$ of *m* homogeneous equations in *n* variables always has a nontrivial solution.

Exercise 7.2.17 Let B be an $n \times n$ matrix, and consider the subspaces $U = \{A \mid A \text{ in } \mathbf{M}_{mn}, AB = 0\}$ and $V = \{AB \mid A \text{ in } \mathbf{M}_{mn}\}$. Show that dim $U + \dim V = mn$.

Exercise 7.2.18 Let U and V denote, respectively, the spaces of even and odd polynomials in P_n . Show that dim U + dim V = n + 1. [*Hint*: Consider $T : \mathbf{P}_n \to \mathbf{P}_n$ where T[p(x)] = p(x) - p(-x).]

Exercise 7.2.19 Show that every polynomial f(x) in \mathbf{P}_{n-1} can be written as f(x) = p(x+1) - p(x) for some polynomial p(x) in \mathbf{P}_n . [*Hint*: Define $T : \mathbf{P}_n \to \mathbf{P}_{n-1}$ by T[p(x)] = p(x+1) - p(x).

Exercise 7.2.20 Let U and V denote the spaces of symmetric and skew-symmetric $n \times n$ matrices. Show that $\dim U + \dim V = n^2.$

Exercise 7.2.21 Assume that *B* in \mathbf{M}_{nn} satisfies $B^k = 0$ for some $k \ge 1$. Show that every matrix in \mathbf{M}_{nn} has the form BA - A for some A in \mathbf{M}_{nn} . [*Hint*: Show that $T: \mathbf{M}_{nn} \to \mathbf{M}_{nn}$ is linear and one-to-one where T(A) = BA - A for each A.]

Exercise 7.2.22 Fix a column $\mathbf{y} \neq \mathbf{0}$ in \mathbb{R}^n and let $U = \{A \text{ in } \mathbf{M}_{nn} | A\mathbf{y} = \mathbf{0}\}$. Show that dim U = n(n-1).

Exercise 7.2.23 If B in \mathbf{M}_{mn} has rank r, let $U = \{A \text{ in } V \}$ $\mathbf{M}_{nn} \mid BA = 0$ and $W = \{BA \mid A \text{ in } \mathbf{M}_{nn}\}$. Show that dim U = n(n - r) and dim W = nr. [*Hint*: Show that U consists of all matrices A whose columns are in the null space of B. Use Example 7.2.7.]

Exercise 7.2.24 Let $T: V \to V$ be a linear transformation where dim V = n. If ker $T \cap \text{im } T = \{0\}$, show that every vector **v** in V can be written $\mathbf{v} = \mathbf{u} + \mathbf{w}$ for some **u** in ker T and w in im T. [*Hint*: Choose bases $B \subseteq \ker T$ and $D \subseteq \text{im } T$, and use Exercise 6.3.33.]

b. Conclude that $\{x-1, x^2-1, \dots, x^n-1\}$ is a basis **Exercise 7.2.25** Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator of rank 1, where \mathbb{R}^n is written as rows. Show that there exist numbers a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n such that T(X) = XA for all rows X in \mathbb{R}^n , where

$$A = \begin{bmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & & \vdots \\ a_nb_1 & a_nb_2 & \cdots & a_nb_n \end{bmatrix}$$

[*Hint*: im $T = \mathbb{R}\mathbf{w}$ for $\mathbf{w} = (b_1, \ldots, b_n)$ in \mathbb{R}^n .]

Exercise 7.2.26 Prove Theorem 7.2.5.

Exercise 7.2.27 Let $T: V \to \mathbb{R}$ be a nonzero linear transformation, where dim V = n. Show that there is a basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ of *V* so that $T(r_1\mathbf{e}_1 + r_2\mathbf{e}_2 + \dots + r_n\mathbf{e}_n) = r_1$.

Exercise 7.2.28 Let $f \neq 0$ be a fixed polynomial of degree $m \ge 1$. If p is any polynomial, recall that $(p \circ f)(x) = p[f(x)]$. Define $T_f : P_n \to P_{n+m}$ by $T_f(p) = p \circ f.$

- a. Show that T_f is linear.
- b. Show that T_f is one-to-one.

Exercise 7.2.29 Let U be a subspace of a finite dimensional vector space V.

- a. Show that $U = \ker T$ for some linear operator $T: V \to V.$
- b. Show that $U = \operatorname{im} S$ for some linear operator $S: V \rightarrow V$. [*Hint*: Theorem 6.4.1 and Theorem 7.1.3.]

Exercise 7.2.30 Let *V* and *W* be finite dimensional vector spaces.

- a. Show that dim $W \leq \dim V$ if and only if there exists an onto linear transformation $T: V \to W$. [Hint: Theorem 6.4.1 and Theorem 7.1.3.]
- b. Show that dim $W \ge \dim V$ if and only if there exists a one-to-one linear transformation $T: V \rightarrow W$. [*Hint*: Theorem 6.4.1 and Theorem 7.1.3.]

Exercise 7.2.31 Let A and B be $n \times n$ matrices, and assume that $AXB = 0, X \in \mathbf{M}_{nn}$, implies X = 0. Show that A and B are both invertible. [Hint: Dimension Theorem.]

7.3 Isomorphisms and Composition

Often two vector spaces can consist of quite different types of vectors but, on closer examination, turn out to be the same underlying space displayed in different symbols. For example, consider the spaces

 $\mathbb{R}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}$ and $\mathbf{P}_1 = \{a + bx \mid a, b \in \mathbb{R}\}$

Compare the addition and scalar multiplication in these spaces:

$$(a, b) + (a_1, b_1) = (a + a_1, b + b_1)$$

 $r(a, b) = (ra, rb)$
 $(a + bx) + (a_1 + b_1x) = (a + a_1) + (b + b_1)x$
 $r(a + bx) = (ra) + (rb)x$

Clearly these are the *same* vector space expressed in different notation: if we change each (a, b) in \mathbb{R}^2 to a + bx, then \mathbb{R}^2 becomes \mathbf{P}_1 , complete with addition and scalar multiplication. This can be expressed by noting that the map $(a, b) \mapsto a + bx$ is a linear transformation $\mathbb{R}^2 \to \mathbf{P}_1$ that is both one-to-one and onto. In this form, we can describe the general situation.

Definition 7.4 Isomorphic Vector Spaces

A linear transformation $T : V \to W$ is called an **isomorphism** if it is both onto and one-to-one. The vector spaces *V* and *W* are said to be **isomorphic** if there exists an isomorphism $T : V \to W$, and we write $V \cong W$ when this is the case.

Example 7.3.1

The identity transformation $1_V: V \to V$ is an isomorphism for any vector space V.

Example 7.3.2

If $T : \mathbf{M}_{mn} \to \mathbf{M}_{nm}$ is defined by $T(A) = A^T$ for all A in \mathbf{M}_{mn} , then T is an isomorphism (verify). Hence $\mathbf{M}_{mn} \cong \mathbf{M}_{nm}$.

Example 7.3.3

Isomorphic spaces can "look" quite different. For example, $\mathbf{M}_{22} \cong \mathbf{P}_3$ because the map $T: \mathbf{M}_{22} \to \mathbf{P}_3$ given by $T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a + bx + cx^2 + dx^3$ is an isomorphism (verify).

The word *isomorphism* comes from two Greek roots: *iso*, meaning "same," and *morphos*, meaning "form." An isomorphism $T: V \to W$ induces a pairing

 $\mathbf{v} \leftrightarrow T(\mathbf{v})$